HBC230864[HAOI2010]最长公共子序列,动态规划Linear Fractional Transformation题解

八贝勒 算法基础篇 36 0
不断提升技能,才能在职场中立于不败之地!全网最全C++题库,助您成为编程领域的佼佼者。
are also pairwise distinct complex numbers, your task is to calculate. . It can be shown that the answer is always unique to the given contraints.

The linear fractional transformations are the functions f(z)=frac{az+b}{cz+d} f(z)= cz+d az+b ​ (a,b,c,d in mathbb{C}, ad-bc neq 0) (a,b,c,d∈C,ad−bc  ​ =0) mapping the extended complex plane mathbb{C} cup { infty } C∪{∞} onto itself. Given f(z_1) = w_1 f(z 1 ​ )=w 1 ​ , f(z_2) = w_2 f(z 2 ​ )=w 2 ​ and f(z_3) = w_3 f(z 3 ​ )=w 3 ​ , where z_1 z 1 ​ , z_2 z 2 ​ and z_3 z 3 ​ are pairwise distinct complex numbers and w_1 w 1 ​ , w_2 w 2 ​ and w_3 w 3 ​ are also pairwise distinct complex numbers, your task is to calculate f(z_0) f(z ​ ) for a certain complex number z_0 z ​ . It can be shown that the answer is always unique to the given contraints.

HBC230864[HAOI2010]最长公共子序列,动态规划Linear Fractional Transformation题解
-第1张图片-东莞河马信息技术
(图片来源网络,侵删)

标签: HBC230864[HAOI2010]最长公共子序列 动态规划Linear Fractional Transformation题解