在网友的国度中共有n种不同面额的货币,第i种货币的面额为a[i],你可以假设每一种货币都有无穷多张,为了方便,我们把货币种数为n、面额数组为a[1..n]的货币系统记作(n,a),两个货币系统(n,a)和(m,b)是等价的,当且仅当对于任意非负整数x,它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。
在网友的国度中共有n种不同面额的货币,第i种货币的面额为a[i],你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为n、面额数组为a[1..n]的货币系统记作(n,a)。 在一个完善的货币系统中,每一个非负整数的金额x 都应该可以被表示出,即对每一个非负整数x,都存在n个非负整数t[i] 满足a[i] x t[i] 的和为x。然而,在网友的国度中,货币系统可能是不完善的,即可能存在金额x不能被该货币系统表示出。例如在货币系统n=3, a=[2,5,9]中,金额1,3就无法被表示出来。 两个货币系统(n,a)和(m,b)是等价的,当且仅当对于任意非负整数x,它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。 现在网友们打算简化一下货币系统。他们希望找到一个货币系统(m,b),满足(m,b) 与原来的货币系统(n,a)等价,且m尽可能的小。他们希望你来协助完成这个艰巨的任务:找到最小的m。
(图片来源网络,侵删)