Given two non-negative integersX{X}X and Y{Y}Y, determine the value of ∑i=0X∑j=[i=0]Y[i&j=0]log2(i+j)+1sum_{i=0}^{X}sum_{j=[i=0]}^{Y}[i&j=0]lfloorlog_2(i+j)+1rfloor∑i=0X∑j=[i=0]Y[i&j=0]log2(i+j)+1 modulo109+710^9+7109+7 where &&&denotes bitwise AND; [A]{[A]}[A]equals 1 ifA{A}A is true, otherwise 0{0}0; xlfloor xrfloorxequals the maximum integer whose value is no more than x{x}x.
Given two non-negative integers X{X}X and Y{Y}Y, determine the value of ∑i=0X∑j=[i=0]Y[i&j=0]⌊log2(i+j)+1⌋sum_{i=0}^{X}sum_{j=[i=0]}^{Y}[i&j=0]lfloorlog_2(i+j)+1rfloor∑i=0X∑j=[i=0]Y[i&j=0]⌊log2(i+j)+1⌋ modulo 109+710^9+7109+7 where &&& denotes bitwise AND; [A]{[A]}[A] equals 1 if A{A}A is true, otherwise 0{0}0; ⌊x⌋lfloor xrfloor⌊x⌋ equals the maximum integer whose value is no more than x{x}x.
(图片来源网络,侵删)