Define the functionf(n)f(n)f(n)as the number of different values ofnileft lfloor frac{n}{i} right rfloorin, whereiiican be any positive integer.For example,f(5)=4f(5)=4f(5)=4because5ileft lfloor fra
Define the function f(n)f(n)f(n) as the number of different values of ⌊ni⌋left lfloor frac{n}{i} right rfloor⌊in⌋, where iii can be any positive integer.For example,f(5)=4f(5)=4f(5)=4 because ⌊5i⌋left lfloor frac{5}{i} right rfloor⌊i5⌋ can be 0,1,20,1,20,1,2 and 555 when i=6,4,2i=6,4,2i=6,4,2 and 111 respectively. Given you a positive integer nnn, you need to answer the value of f(n)f(n)f(n). 定义 f(n)f(n)f(n) 为 ⌊ni⌋left lfloor frac{n}{i} right rfloor⌊in⌋ 不同的取值的个数,其中 iii 取遍所有正整数。比如, f(5)=4f(5)=4f(5)=4,因为 ⌊5i⌋left lfloor frac{5}{i} right rfloor⌊i5⌋ 可以为 0,1,2,50,1,2,50,1,2,5。 给定一个正整数 nnn,求出 f(n)f(n)f(n) 的值。