HBC209436BaXianGuoHai,GeXianShenTong题解

惰性的成熟 算法基础篇 57 0
全网最全C++题库,助您快速提升编程技能!题库丰富多样,涵盖各个领域,让您在练习中不断成长!
) of length 3, Bobo defines their product as. begin{matrix} v_1^{e_{1, 1}} times dots times v_n^{e_{1, n}} \ dots \ v_1^{e_{q, 1}} times dots times v_n^{e_{q, n}} end{matrix}. The vectors and integers are generated given parameters

Let P = 998244353, for two vectors (a_0, a_1, a_2) (a ​ ,a 1 ​ ,a 2 ​ ), (b_0, b_1, b_2) (b ​ ,b 1 ​ ,b 2 ​ ) of length 3, Bobo defines their (multiplicative) product as (a_0, a_1, a_2) times (b_0, b_1, b_2) \ = ( (a_0 b_0 + a_1 b_2 + a_2 b_1) bmod P, \ (a_1 b_0 + a_2 b_2 + a_0 b_1) bmod P, \ (a_2 b_0 + a_0 b_2 + a_1 b_1) bmod P ). (a ​ ,a 1 ​ ,a 2 ​ )×(b ​ ,b 1 ​ ,b 2 ​ ) =((a ​ b ​ +a 1 ​ b 2 ​ +a 2 ​ b 1 ​ )modP, (a 1 ​ b ​ +a 2 ​ b 2 ​ +a ​ b 1 ​ )modP, (a 2 ​ b ​ +a ​ b 2 ​ +a 1 ​ b 1 ​ )modP). Given n 3-vectors v_1, dots, v_n v 1 ​ ,…,v n ​ and q cdot n q⋅n integers e_{i, 1}, dots, e_{i, n} e i,1 ​ ,…,e i,n ​ , he would like to compute q products, which are begin{matrix} v_1^{e_{1, 1}} times dots times v_n^{e_{1, n}} \ dots \ v_1^{e_{q, 1}} times dots times v_n^{e_{q, n}} end{matrix} v 1 e 1,1 ​ ​ ×⋯×v n e 1,n ​ ​ … v 1 e q,1 ​ ​ ×⋯×v n e q,n ​ ​ ​ The vectors and integers are generated given parameters m, z_0, a, b m,z ​ ,a,b by the following codes: z = z0 for i in 1..n   for j in 0..2     z = (z * a + b) mod 2^32     v[i][j] = z mod P for k in 1..q   for i in 1..n     e[k][i] = 0     for j in 0..(m - 1)       z = (z * a + b) mod 2^32       e[k][i] += z * 2^{32 * j}

HBC209436BaXianGuoHai,GeXianShenTong题解
-第1张图片-东莞河马信息技术
(图片来源网络,侵删)
不断学习,不断挑战,才能在编程领域中脱颖而出!全网最全C++题库,助您成为编程高手!

标签: HBC209436BaXianGuoHai GeXianShenTong题解