HBC232892[JSOI2011]柠檬,dp的优化,栈,单调队列单调栈,数据结构,动态规划Nearest Point题解

庄子墨 算法基础篇 102 0
想要检验自己的编程水平?来试试全网最全C++题库,让您在挑战中不断进步。
Calculating the neatest point is known to be difficult. Therefore, there are many heuristic methods proposed. The following describes one of these algorithms:. , the algorithm takes the point that is closest to. .x∣. If there are multiple such points, the point with the smallest index will be selected.α is selected as 0, the coordinates of these three points after the rotation are. (1,1),(3,3),(0,2), respectively, and thus the nearest points to. , the coordinates of these three points after the rotation are. represents the probability for the algorithm to take

Nearest point is a classical problem in computational geometry. Given a set  S S of  n n points  p_1, . . . , p_n, p_j p 1 ​ ,...,p n ​ ,p j ​ is the nearest point of pi if  (1) j neq i (1)j  ​ =i , and  (2) (2) for any other point  p_k (knotin{i, j}), dis(p_i , p_j ) ≤ dis p k ​ (k  ​ ∈i,j),dis(p i ​ ,p j ​ )≤dis  (p_i , p_k) (p i ​ ,p k ​ ) , where  dis dis  (p_1, p_2) (p 1 ​ ,p 2 ​ ) is defined as  sqrt{(p_1.x − p_2.x)^2 + (p_1.y − p_2.y)^2} (p 1 ​ .x−p 2 ​ .x) 2 +(p 1 ​ .y−p 2 ​ .y) 2 ​ in a  2-D 2−D space.  Calculating the neatest point is known to be difficult. Therefore, there are many heuristic methods proposed. The following describes one of these algorithms:          • Step1: A random angle  α α is uniformly selected from range [−π, π) [−π,π).          • Step2: All points in  S S are rotated  α α counterclockwise centered on the origin (0, 0) (0,0).          • Step3: For each point  p_i p i ​ , the algorithm takes the point that is closest to  p_i p i ​ on the x-coordinate, i.e x−coordinate,i.e., the point  p_j (i neq j) p j ​ (i  ​ =j) that minimizes |p_i .x − p_j .x| ∣p i ​ .x−p j ​ .x∣. If there are multiple such points, the point with the smallest index will be selected.  For example, suppose there are three points p_1 = (1, 1) p 1 ​ =(1,1), p_2 = (3, 3) p 2 ​ =(3,3), and  p_3 = (0, 2) p 3 ​ =(0,2) in set S S.          1. When  α α is selected as 0, the coordinates of these three points after the rotation are (1, 1),(3, 3),(0, 2) (1,1),(3,3),(0,2), respectively, and thus the nearest points to  p_1, p_2, p_3 p 1 ​ ,p 2 ​ ,p 3 ​ found by the algorithm are p_3, p_1, p_1 p 3 ​ ,p 1 ​ ,p 1 ​ , respectively.          2. When α α is selected as  frac{π}4 4 π ​ , the coordinates of these three points after the rotation are (0, sqrt2),(0, 3 sqrt 2),(− sqrt 2, sqrt 2) (0, 2 ​ ),(0,3 2 ​ ),(− 2 ​ , 2 ​ ), and thus the nearest points are p_2, p_1, p_1 p 2 ​ ,p 1 ​ ,p 1 ​ , respectively. Now, given the  n n points  p_1, . . . , p_n p 1 ​ ,...,p n ​ in S S, your task is to output an  n × n n×n matrix w w, where  w_{i,j} w i,j ​ represents the probability for the algorithm to take  p_j p j ​ as the nearest point of  p_i p i ​ . 

HBC232892[JSOI2011]柠檬,dp的优化,栈,单调队列单调栈,数据结构,动态规划Nearest Point题解
-第1张图片-东莞河马信息技术
(图片来源网络,侵删)
不断挑战自我,才能突破极限!全网最全C++题库,让您在编程道路上越走越远。

标签: HBC232892[JSOI2011]柠檬 dp的优化 单调队列单调栈 数据结构 动态规划Nearest Point题解